Framework for Forecasting, Scheduling & Deviation Settlement for RE

14.10.2016

DR. SUSHANTA K. CHATTERJEE
JOINT CHIEF (REGULATORY AFFAIRS)
CENTRAL ELECTRICITY REGULATORY
COMMISSION

Integration of RE Sources into the Grid

- CERC notified the Framework on Forecasting, Scheduling and Imbalance Handling for Variable Renewable Energy Sources (Wind and Solar)- for Regional Entities- on 7/8/15
- CERC notified the Ancillary Services Operations Regulations, 2015, applicable on ISTS, on 19/8/15
- CERC/FOR agreed on draft Model Regulation on operational and commercial framework for intrastate wind & solar generators

CERC's Framework for Scheduling, Forecasting & Deviation Settlement for RE Sources (solar & wind)

- Forecasting and scheduling must be done for both solar and wind regional entities
 - Can be done by generator and/or RLDC
 - Larger geographical area results in better forecasting accuracy
- Due to the infirm nature of these sources, more flexibility provided w.r.t schedule
- Incentive to improve forecasting- deviation charges outside a tolerance band, which could be tightened over time.
- Integration with existing grid-framework for long term sustainability of RE sources on the grid

Deviation Settlement Framework for Regional Entities

- Error definition: [(Actual generation Scheduled generation)/Available Capacity] x 100
- Payment as per schedule @PPA Rate
- Deviation Settlement within tolerance band (+/- 15%):
 - Receipt from/payment to pool @PPA rate (i.e. in effect, payment as per actuals)
- Beyond 15%, a gradient band for deviation charges is proposed as follows:

 Abs Error (% of AvC)
 Deviation Charge

 15%-25%
 10% of PPA rate

 25%-35%
 20% of PPA rate

 >35%
 30% of PPA rate

• 16 revisions allowed, one for every one-and-half-hour block, effective from 4th time-block.

Settlement of RPO under revised framework

- RPO deemed complied at scheduled generation
- In case of under-injection by RE generator, actual units to be balanced with RPO
 - Need for procurement of equivalent REC for shortfall in RE generation
- Similarly over-injection necessitates
 - crediting REC towards such excess generation

Instead of procuring or crediting REC for each case

- all RE under/over-injections can be netted off (on monthly basis) for the entire pool first
- > RE shortfall: RECs will be purchased from exchange and extinguished
- > RE surplus: notional RECs will be credited to DSM Pool as carry forward for next cycle

• Example:

Total RE Over-injections in pool = 10,090 MWh; Total Shortfall = 10,195 MWh Net= Over-injections – Shortfalls = 10,090 -10,195= - 105 MWh

Central Agency (on behalf of DSM pool) purchases 105 RECs from market for shortfall at end of month

Forecasting, Scheduling and Deviation at State Level

Model Intra-State Framework

Objectives of Model Framework for States

- To roll out forecasting & scheduling for wind and solar generators so that Grid operators
 - have day-ahead and hour-ahead visibility into how much renewable power is expected to be injected
 - o can forecast 'net load' (load RE power)
 - o can plan for up and down ramps of net load
 - o can plan balancing resources for managing uncertainty
- 2) For generators to integrate with the grid in a sustainable way,
 - so they do not have to incur backing-down losses, while addressing inherent variability & uncertainty of RE
- 3) To provide incentives for accurate forecasting & minimizing MW deviations from schedule

Challenges

- Few states have implemented Availability Based Tariff (ABT) mechanism as stipulated in IEGC:
 - o Chhattisgarh, Delhi, Gujarat, Maharashtra, MP, West Bengal
- Nearly all states have unique methodology of intra-state commercial settlement
- Fragmented wind industry: 27,853 wind turbines owned by over 5,000 generators
- 3GW of solar capacity to be scaled to 100 GW, in various forms and different transaction types
- Commercial metering point varies across states

Aggregator: Qualified Coordinating Agency (QCA) in States

To coordinate at a pooling station level:

- Forecasting
- Aggregate schedules and schedule revisions
- Metering & telemetry
- Communicate with SLDC
- De-pool energy deviations
- De-pool deviation charges; on basis of actual generated units

Advantages

- ✓ SLDCs do not need to interact with thousands of generators
- ✓ Small generators do not have to build capacity on forecasting & scheduling

Wind Rich States: Metering & Energy Accounting

Proposed Deviation Settlement for RE generators

'Absolute Error': absolute value of the error in actual generation w.r.t. scheduled generation and the 'Available Capacity' (AvC), for each time block: Error (%) = 100 X [Actual Generation— Scheduled Generation] / (AvC);

Deviation Charges:

<u> </u>	Rs 1.5/unit	Rs 1.0/unit	Rs 0.5/unit	deviation	e band: zero charges	Rs 0.5/unit	Rs 1.0/unit	Rs 1.5/unit
1								Actual kWh
	9-35% of Avc 9-35% of Avc 9-15% of Avc 9: Schodulo 9+15% of Avc 9+35% of Avc 9+35% of Avc							

- •15% tolerance band for existing wind / solar generators
- •10% tolerance band for new wind / solar generators

Intra-state RE generators: 2 types of transactions

Cornerstones of sustainable Regulatory Framework for grid-integration of Solar & Wind sources

Accounting Process

1. Metering (SEM) at interface point

Distribution companies

Open access consumers

Conventional generators

Renewable energy generators at pooling station level

2. Energy Accounting

Separate Energy Accounting of Schedule

Separate Energy Accounting of Actual

Separate Energy Accounting of Deviation

3. Deviation Charge and its Settlement

Computation of deviation charge

Allocation of deviation charge

2. Energy Accounting

A.Separate Energy Accounting of <u>schedule</u>

- (i) distribution companies (drawl)
- (ii) open access consumers (drawl)
- (iii) conventional generators (generation)
- (iv) renewable energy generators at pooling station level (generation)

B. Separate Energy Accounting of <u>actual</u>

- (i) distribution companies (drawl)
- (ii) open access consumers (drawl)
- (iii) conventional generators (generation)
- (iv) renewable energy generators at pooling station level (generation)

C.Separate Energy Accounting of deviation

- C1: A(i) B(i) distribution companies (drawl)
- C2: A(ii) B(ii) open access consumers (drawl)
- C3: A(iii) B(iii) conventional generators (generation)
- C4: A(iv) B(iv) renewable energy generators at pooling station level (generation)

Implementing Intra-State Deviation Settlement

- Regulations by concerned SERC
- Procedures for Scheduling, Metering, Accounting, Settlement
- Interface Metering for intra-state entities
 - o Multiple manufactures e.g., L&T, Secure Meters, Elster, etc.
 - Typical cost per meter as per CEA standard Rs. 50,000
 - o Estimated no. of meters in a state: 250
 - o Total estimated cost: Rs. 2 Crores
- Software Requirement for scheduling, metering, accounting and settlement
 - Estimated cost Rs. 2 3 Crores
- Capacity building of stakeholders
- Total Estimated Timeframe for implementation: 3 6 months
- Past experience Implemented in Gujarat, MP, Maharashtra, Chattisgarh, Delhi, West Bengal, etc.

THANK YOU

DR. SUSHANTA K. CHATTERJEE
(JOINT CHIEF- REGULATORY AFFAIRS)

JCRA@CERCIND.GOV.IN